Nano-Ferric Oxide Promotes Watermelon Growth

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nano-Ferric Oxide Promotes Watermelon Growth

With the rapid growing of nanotechnology, the effects of nanomaterials released into the environment on plants have drawn more and more attention. Iron is an element essential for plant growth and development. Iron is involved in chlorophyll formation; iron deficiency will cause a plant disorder known as chlorosis. However, whether iron in nano-ferric oxide can be absorbed by plants were rarely...

متن کامل

Magnetotactic bacteria form magnetite from a phosphate-rich ferric hydroxide via nanometric ferric (oxyhydr)oxide intermediates.

The iron oxide mineral magnetite (Fe3O4) is produced by various organisms to exploit magnetic and mechanical properties. Magnetotactic bacteria have become one of the best model organisms for studying magnetite biomineralization, as their genomes are sequenced and tools are available for their genetic manipulation. However, the chemical route by which magnetite is formed intracellularly within ...

متن کامل

The effect of nano-iron oxide on growth, physiology, and callogenesis in pepper in vitro

The aim of this research was to study the effect of iron oxide nanoparticles (FeO NPs) on the growth, differentiation, anatomy, and physiology of pepper (Capsicum annuum L.) on the basis of a completely randomized design in vitro condition. Seedlings were cultured in MS medium containing four concentrations of FeO NPs (0, 1, 10, and 20 mgl-1). Also, the effect of the different concentrations of...

متن کامل

Nitric oxide binding to ferric cytochrome P450: a computational study.

The interaction between nitric oxide (NO) and the active site of ferric cytochrome P450 was studied by means of density functional theory (DFT), at the generalized gradient approximation level, and of the SAM1 semiempirical method. The electrostatic effects of the protein environment were included in our DFT scheme by using a hybrid quantum classical approach. The active-site model consisted of...

متن کامل

Depending on Its Nano-Spacing, ALCAM Promotes Cell Attachment and Axon Growth

ALCAM is a member of the cell adhesion molecule (CAM) family which plays an important role during nervous system formation. We here show that the two neuron populations of developing dorsal root ganglia (DRG) display ALCAM transiently on centrally and peripherally projecting axons during the two phases of axon outgrowth. To analyze the impact of ALCAM on cell adhesion and axon growth, DRG singl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Biomaterials and Nanobiotechnology

سال: 2015

ISSN: 2158-7027,2158-7043

DOI: 10.4236/jbnb.2015.63016